Dear all,
The next LIRa session will take place on Thursday, May 9th. Please, find the details below:
Speaker: Fan Yang (University of Helsinki)
Date and Time: Thursday, May 9th 2019, 16:30-18:00
Venue: ILLC Seminar Room F1.15, Science Park 107.
Title: Logics for first-order team properties.
Abstract. Team semantics is a semantical framework originally
introduced by Hodges [1997] for the study of various dependence and
independence concepts, and later systematically developed by
Väänänen [2007] with the introduction of dependence logic (D).
Other prominent logics based on team semantics include independence
logic (Ind) [Grädel, Väänänen 2013], inclusion logic [Galliani
2012], etc. In team semantics formulas are evaluated in a model over
sets of assignments (called teams) rather than single assignments as
in the usual first-order logic. Teams are essentially relations, and
thus open formulas define team properties. In general, knowing the
expressive power of a logic for sentences (with no free variables)
does not automatically give a characterization for the expressive
power of open formulas of the same logic. Such a peculiar phenomenon
has sparked several studies on the expressive power of logics based on
team semantics. In particular, while D and Ind are both equivalent to
existential second-order logic (ESO) on the level of sentences, it
turns out that open formulas of Ind characterize all ESO team
properties [Galliani 2012], whereas the former characterize only
downward closed ESO team properties [Kontinen, Väänänen 2009]. In
this talk, we introduce a logic, denoted by FOT, whose expressive
power coincides with first-order logic both on the level of sentences
and on the level of open formulas (in the sense that open formulas of
FOT characterize exactly first-order definable team properties). We
also show, as an application of Lyndon’s Interpolation Theorem, that
a natural fragment of FOT captures downward closed first-order
definable team properties.
In the second part of the talk, we define a system of natural
deduction for FOT, and show that it is sound and complete. We also
discuss some applications of our logic. In particular, we demonstrate
that Arrow’s Theorem in social choice can be formalized in FOT, and
Armstrong’s axioms for functional dependencies in database theory
can be derived in our system of FOT.
(This talk is based on joint work with Juha Kontinen.)
Hope to see you there!
The LIRa team